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In 1977, Richard Feynman, in an invited lecture at the national APS meeting, stated
unequivocally that quantum mechanical principles placed few important restrictions on
how a stable atom can be held in place, and, indeed, a stable atom on the whole has
a comparatively definite position fixed by its comparatively massive nucleus. In this
spirit, N-body problems are studied using molecules and classical molecular potentials
and also using collections of molecules, called particles, with related potentials derived
through conservation of mass and energy. Detailed applications include primary vortex
flow and turbulent flow for both water vapor and air, soliton collision, and the motion
of a top on a smooth surface. Other applications, like microdrop collision, stress of a
slotted copper plate, contact angle of adhesion, cellular self-reorganiztion, the bounce
of an elastic ball, and elastic snap-through are mentioned and referenced appropriately.
Lastly, numerical methodology is developed which preserves the physics of special
relativity and is applied to simulate a relativistic oscillator.
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1. PHYSICAL, MATHEMATICAL, AND COMPUTATIONAL
PRELIMINARIES

1.1. N-Body Problems

Our concern throughout will be with theN-body problem. TheN-body prob-
lem is described in complete generality as follows. In cgs units and fori = 1,2,. . . ,
N, let Pi of massmi be at Er i = (xi , yi , zi ), have velocityEvi = (vi ,x, vi ,y, vi ,z),
and have accelerationEai = (ai ,x, ai ,y, ai ,z) at timet ≥ 0. Let the positive distance
betweenPi and Pj , i 6= j , be ri j = r j i 6= 0. Let the force onPi due to Pj be
EFi j = EFi j (ri j ), so that the force depends only on the distance betweenPi and
Pj . Also, assume that the forceEF ji on Pj due toPi satisfiesEF ji = − EFi j . Then,
given the intial positions and velocities of all thePi , i = 1,2,3,. . . , N, the general
N-body problem is to determine the motion of the system if eachPi interacts with
all the otherPj ’s in the system.
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1.2. Classical Molecular Forces

Classical molecular forces behave, in general, as follows (Feynamet al.,
1963):

• when two close molecules are pulled apart, they attract;
• when pushed together, they repel; and
• repulsion is of a greater order of magnitude than is attraction.

The most important exception to this general behavior is the basic fluid of
living matter, that is, liquid water, the primary reason being that close liquid water
molecules exhibit hydrogen bonding. It should be noted however that these bonds
are not strong and that the average number of molecules, or the cluster size, which
exhibit such bonds decreases with temperature and pressure. Also, it is not known
if such bonds exist if a flow is turbulent.

There are a variety of classical molecular potentials for the interactions
of molecules and from these classical molecular force formulas can be derived
(Hirschfelderet al., 1967). There are, for example, Buckingham, Lennard–Jones,
Morse, Slater–Kirkwood, Stockmayer, Sutherland, and Yntema–Schneider poten-
tials. The potential which has received the most attention is the Lennard–Jones
potential, that is,

φ(ri j ) = 4ε

[
σ 12

r 12
i j

− σ
6

r 6
i j

]
erg, (1)

in which ri j is measured in Angstroms. In (1), the term with exponents 12 is the
repulsion term and the term with exponents 6 is the attraction term. Asri j goes to
zero, the resulting motion is volatile.

For example, an approximate Lennard–Jones potential for water vapor
molecules is

φ(ri j ) = 1.9646· 10−13

[
2.72512

r 12
i j

− 2.7256

r 6
i j

]
erg, (2)

in which, with respect to (1), 4ε = 1.9646· 10−13 andσ = 2.725. The forceEFi j

exerted onPi by Pj is then

EFi j = 1.9646· 10−5

[
12 · 2.72512

r 13
i j

− 6 · 2.7256

r 7
i j

]
Er j i

r i j
dynes. (3)

Note thatFi j = ‖ EFi j ‖ = 0 implies thatri j = 3.06 Å, which is the equilibrium
distance, with repulsion prevailing ifri j < 3.06 and attraction prevailing ifri j >
3.06. Note also that in a regular triangle with edgeri j = 3.06 Å, the altitude is
2.65Å.
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1.3. Equations of Motion for Water Vapor Molecules

In molecular mechanics we simulate the motion of a system of molecules
using classical molecular potentials and Newtonian mechanics. Thus the motion
for a single water vapor moleculePi acted on by a single water vapor molecule
Pj , i 6= j , is then

mi Eai = 1.9646· 10−5

[
12(2.72512)

r 13
i j

− 6 · 2.7256

r 7
i j

]
Eri j

r i j
. (4)

Since the mass of a water molecule is 30.103· 10−24 gr, the latter equation is
equivalent to

Eai = 160.33 · 1019

[
818.90

r 13
i j

− 1

r 7
i j

]
Er j i

r i j

(cm

s2

)
. (5)

Recasting the latter equation in̊A/(ps2) yields

Eai = 160, 330

[
818.90

r 13
i j

− 1

r 7
i j

]
Er j i

r i j

(
Å

ps2

)
. (6)

On the molecular level, however, the effective force onPi is local, that is, it
is determined only by close molecules. But, because of our interest in turbulence,
in which the forces are so great that attraction is of lesser importance, we will take
local to mean the solution of the equation

d Fi j

dri j
= 0. (7)

The solution to this equation yieldsri j = 3.39Å. Thus, forri j ≥ D = 3.39Å, we
chooseEFi j = E0. Note that it is more common to chooseD = 3σ .

From (5), then, the dynamical equation for water moleculePi will be

d2Eri

dt2
= 160, 330

∑
j

j 6=i

[
818.90

r 13
i j

− 1

r 7
i j

]
Er j i

r i j
, ri j < D . (8)

The equations of motion for a system of water molecules are then

d2Eri

dt2
= 160, 330

∑
j

j 6=i

[
818.90

r 13
i j

− 1

r 7
i j

]
Er j i

r i j
, i = 1, 2, 3, . . . N, ri j < D .

(9)
Note that on the molecular level gravity can be neglected since 980 cm/s2 =
(980)10−16 Å/ps2. Note also that in simulating the motion of a system ofN
molecules, nonlinear Eq. (9) forewarns us that we will have to solve large systems
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of nonlinear, second-order, ordinary differential equations (2N in two dimensions
and 3N in three dimensions), and that these will have to be solved numerically.
The method to be used is based on the leapfrog formulas.

1.4. The Leapfrog Formulas

Classical molecular force formulas require small time steps in any numerical
simulation to yield physically correct results for the effect of repulsion, which is
unbounded when the distance between the molecules is close to zero. Because we
are restricted physically to small time steps and because the number of equations
is usually exceptionally large, Runge-Kutta and Taylor expansion methods, for
example, prove to be unwieldy for related problems. Hence, in this section we will
describe a simplistic, efficient, but low-order method, called theleapfrogmethod,
for molecular mechanics simulations and it is described as follows (Greenspan,
1997).

Choose a positive time step1t and let tk = k1t, k = 0,1,2,. . . . For i =
1,2,3,. . . , N, let Pi have massmi and attk let it be at

Erik = (xik , yi ,k, zi ,k),

have velocity

Evi ,k = (vi ,k,x, vi ,k,y, vi ,k,z),

and have acceleration

Eai ,k = (ai ,k,x, ai ,k,y, ai ,k,z).

The leapfrog formulas, which relate position, velocity, and acceleration, are

Evi , 1
2
− Evi ,0

1
21t

= Eai ,0, (starter), (10)

Evi ,k+ 1
2
− Evi ,k− 1

2

1t
= Eai ,k, k = 1, 2, 3, . . . , (11)

Eri ,k+1− Eri ,k

1t
= Evi ,k+ 1

2
, k = 0, 1, 2, 3,. . . , (12)

or, explicitly,

Evi , 1
2
= Evi ,0+ 1

2
(1t)Eai ,0 (starter), (13)

Evi ,k+ 1
2
= Evi ,k− 1

2
+ (1t)Eai ,k, k = 1, 2, 3, . . . , (14)

Eri ,k+1 = Eri ,k + (1t)Evi ,k+ 1
2 , k = 0, 1, 2, 3. . . . (15)
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Fig. 1. The leapfrog updating scheme.

Note that (11) and (12) are two-point central difference formulas. The name
leapfrog derives from the way position and velocity are defined at alternate, sequen-
tial time values. As shown in Fig. 1,r values are defined at the timest0, t1, t2, t3, . . .
while thev values are defined at the timest1/2, t3/2, t5/2, t7/2, . . . . The figure also
symbolizes the children’s game “leapfrog.”

In all the examples to be discussed, the leapfrog formulas will be imple-
mented on a Digital Alpha 275 or 533 (64-bit word) scientific PC and can be
reproduced readily by anyone with such a personal computer. Examples which
required supercomputer simulation will not be discussed in the present paper.

In our approach toN-body modelling, we will consider the following three
cases:

• N small (say, 1≤ N ≤ 200)
• N large (say, 200≤ N ≤ 10,000)
• N very large (say, 10,000< N < 1020)

2. N LARGE

2.1. A Cavity Problem

We begin withN large. The very first example will be discussed in great
detail, the ideas and methodology of which extend directly to other examples.

Let us first construct a regular triangular grid of edge length 3.06Å and with
altitude 2.65Å. We determine 4235 grid points in theXY plane as follows:

x(1)= −91.8, y(1)= 0,
x(i ) = x(i − 1)+ 3.06, y(i ) = 0, i = 2, 61,
x(62)= −90.27, y(62)= 2.65
x(i ) = x(i − 1)+ 3.06, y(i ) = 2.65, i = 63, 121,
x(i ) = x(i − 121), y(i ) = y(i − 121)+ 5.30, i = 122, 4235.

At each point (x(i ), y(i )) we set a water vapor moleculePi , i = 1, 4235. This array
is shown in Fig. 2(a). To complete the initial data, recall that in two dimensions
the rms velocityv for a water vapor molecule at 150◦C is v = 6.23 Å/ps. Each
molecule is now assigned this speed in either theX or Y direction, determined at
random, with its sign also determined at random.

Now, in two dimensions consider the square of side 183.6Å, shown in
Fig. 2(b). The interior is called the cavityor the basin of the square. This basin
encloses the molecular fluid shown in Fig. 2(a). The four sides are called the walls.
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Fig. 2. (a) Array of water vapor molecules. (b) The same, but shown contained in
a rigid-wall cavity in which the top wall, CD, is allowed to slide in thex direction
at a velocityV .

The top wall, alone, CD, is allowed to move. It moves in theX direction at a
constant speedV , called the wallspeed. Also it is allowed an extended length so
that the molecular fluid is always completely enclosed by four walls. Then the
cavity problem is to describe the gross motion of the fluid for various choices of
V , which will be given inÅ/ps (for laboratory studies of the cavity problem, see
the treadmill apparatus of Freitaset al., 1985).

2.2. Computational Considerations

In all of our examples, the following computational considerations are
implemented.

For time step1t (ps), andtk = k1t, k = 0, 1, 2, . . . , two problems must be
considered relative to the computations. The first problem is to prescribe a protocol
when, computationally, a molecule has crossed a wall into the exterior of the cavity.
For each of the lower three walls, we will proceed as follows (no-slip condition).
The position will be reflected back symmetrically, relative to the wall, into the
interior of the basin, the velocity component tangent to the wall will be set to zero
and the velocity component perpendicular to the wall will be multiplied by−1. If
the molecule has crossed the moving wall, then its position will be reflected back
symmetrically, itsY component of velocity will be multiplied by−1, and itsX
component of velocity will be increased by the wallspeedV .

The second problem derives from the fact that an instantaneous velocity field
for molecular motion is Brownian. To better interpret gross fluid motion, we will
introduce average velocities as follows. ForJ a positive integer, let particlePi be
at (x(i , k), y(i , k)) at tk and at (x(i , k− J), y(i , k− J)) at tk−J . Then the average
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velocity Evi ,k, J of Pi at tk is defined by

Evi ,k, J =
(

x(i , k)− x(i , k− J)

J1t
,

y(i , k)− y(i , k− J)

J1t

)
. (16)

In the examples to be described, we will discuss results for various values ofJ.
Observe also that the connection between the wall speedV and the Reynolds

number Re is given by Pan and Acrivos (1967).

Re= |V |B/ν, (17)

in which B is the span, that is, the lengthC D in Fig. 2(a), andν is the average
kinematic viscocity of water. Thus, for example, forV = −24 Å/ps, B = 183.6
Å and, at 100◦C (Streeter, 1962),ν = 30 Å2/ps, then (9) yields Re= 147.

2.3. Primary Vortex Generation

Consider first the parameter choicesV = −24 Å/ps, J = 20,000,1t =
0.0001 ps. Figure 3 shows the development of a primary vortex at the respec-
tive timest = 4, 8, 14, 20. An area of compression which precedes and drives the
vortical motion is evident att = 4.0. Other values ofJ which were studied were

Fig. 3. Primary vortex generation. Wallspeed= −24, J = 20, 000.
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16,000, 12,000, 9000, and 6000, each of which yielded results similar to those
of Fig. 3. Note that these results agree qualitatively with experimental results for
cavity flow in the large (Freitaset al., 1985).

Results similar to those in Fig. 3, but with larger primary vortices were ob-
tained withV = −40,−130, and−600.

2.4. Turbulent Flow Generation

Turbulence is the most common yet least understood type of fluid flow. Tur-
bulent flows have two well-defined characteristics:

• Many small vortices appear and disappear quickly (Kolmogorov, 1964),
and
• A strong current develops across the usual primary direction (Schlichting,

1960).

Though mathematical fluid dynamicists are aware that the Navier–Stokes
equations are not the equations of turbulent flow, engineers continue to generate
“turbulent” flows using the Navier–Stokes equations with high Reynolds num-
ber (Ladyzhenskaya, 1969). It should also be observed that formulas of statis-
tical mechanics are not applicable to turbulent flow (Batchelor, 1959; Bernard,
1998).

The discussion in section 2.3 for primary vortex generation now leads to the
following approach to generating turbulent flows. For a sufficiently large magnitude
of the wallspeedV , let us show that turbulence results when, for given1t , a stable
calculation results but noJ exists which yields a primary vortex.

Let us then setV = −3000,1t = 2.5 · 10−6. The motion was simulated
to t = 0.8. Typical results are shown in Fig. 4 forJ = 80,000, 60,000, 40,000,
20,000. None of these figures show a primary vortex because a strong current has
developed across the primary vortex direction. Figure 5 shows an enlargement of
the second frame of Fig. 4 in the range 45≤ x ≤ 91.8, 10≤ y ≤ 100, and reveals
this crosscurrent clearly.

To support the contention that Fig. 4 represents fully turbulent flow, we now
define the concept of a small vortex. For 3≤ M ≤ 6, we define a small vortex
as a flow in whichM molecules nearest to an (M + 1)st molecule rotate either
clockwise or counterclockwise about the (M + 1)st molecule and, in addition, the
(M + 1)st molecule lies interior to a simple polygon determined by the givenM
molecules. With this definition, Fig. 6(a) shows, for example, that the flow in the
second frame in Fig. 4 has 185 small vortices att = 0.8, while Fig. 6(b) shows
that only 0.2 p before, that is, att = 0.6, the resulting flow has 182 small vortices
which are completely different from those in Fig. 6(a).
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Fig. 4. Turbulent flow generation. Wallspeed= −3000,t = 0.8.

2.5. Primary Vortices and Turbulence for Air

Results entirely analogous to those for water vapor were obtained for the
cavity problem for air. But in this case a new problem had to be resolved first. It is
rather interesting that even though air is heterogeneous and consists of a variety of
atoms and molecules, experimental Lennard–Jones potentials are readily available

Fig. 5. Blowup of a right section of the second frame of Fig. 4.
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Fig. 6. (a) 185 small vortices att = 0.8. (b) 182 small vortices att = 0.6.

only for homogeneous air (Hirchfelderet al., 1969). One such potential is

φ(ri j ) = 5.36 · 10−14

[
3.61712

r 12
i j

− 3.6176

r 6
i j

]
erg.

Before one could proceed to dynamical considerations, it is necessary to charac-
terize carefully the hypothetical air molecule to be used. We assume that the air to
be used is nondilute and dry. Dry air consists primarily of 78%N2, 21% O2, and
1% Ar, whose respective masses are

m(N2) = 28 · 1.660· 10−24gr,
m(O2) = 32 · 1.660· 10−24gr,
m(Ar) = 40 · 1.660· 10−24gr.

We now characterize an “air” molecule A as consisting of proportionate
amounts of N2, O2, and Ar and having mass

m(A) = [0.78 · 28+ 0.21 · 32+ 0.01 · 40] · 1.660· 10−24 = 4.807· 10−23gr.

With this hypothetical air molecule, the computations proceeded as for water vapor.
For the parameter choiceV = −40, the resulting primary vortex att = 10.2 is

slightly larger than the corresponding one obtained for water vapor withV = −40
at t = 10.2. Indeed, the average speed for water vapor was 7.52Å/ps while the
average speed for air is 9.02Å/ps, even though the initial velocity for water vapor
was larger than that for air. For the parameter choiceV = −3000, the turbulent
flow is entirely analogous to that for water vapor. The average speed of the air
molecules is 362̊A/ps att = 0.6, while that for water at the same time was 353
Å/ps.



P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464429 June 17, 2003 9:52 Style file version May 30th, 2002

Digital Studies and Perspectives forN-Body Modelling in Physics 259

3. N VERY LARGE

3.1. Particle Simulation

Because statistical mechanics formulas are not applicable to turbulent flow,
we will use a simple route of reducing this case to the caseN large. This will
allow us to apply the numerical methodology of the previous section. We will do
this by invoking the engineering lumped mass approach, that is, molecules will
be aggregated into particles by using mass and energy conservation. The particles
will then be studied dynamically by means of molecular-type formulas, that is,
formulas which include both attraction and repulsion. However, it will now be
essential to include gravity.

3.2. Particle Arrangement and Equations for Water Vapor

Consider first a 30- by -240cm rectangle and on it construct a regular triangular
grid with 8479 points, shown in Fig. 7(a), by the recursion formulas

x(1)= −15.0, y(1)= 0.0,
x(i ) = x(i − 1)+ 1.0, y(i ) = 0.0, i = 2, 31,
x(32)= −14.5, y(32)= 0.866,
x(i ) = x(i − 1)+ 1.0, y(i ) = 0.866, i = 33, 61,
x(i ) = x(i − 61), y(i ) = y(i − 61)+ 1.732, i = 62, 8479.

The side of each triangle in the grid has length of 1 cm. At each grid point (x(i ), y(i ))
set a particlePi , that is, an aggregate of molecules. Thus, the distance between
any two immediate neighbors is unity. Since the initial particle positions are now

Fig. 7. (a) A 30× 240 cm rectangle filled with 8479 particles
arranged in a triangular array. (b) The bottom section of this
rectangle, after most particles (namely, 7549) have settled
near the bottom of the column.
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known, we also assign each particle a small initial velocity of 0.00001 in theX or
Y direction, determined at random, with its sign also determined at random.

The force between two distinct particlesPi and Pj which areRi j cm apart
will be taken to have magnitudeF given by

F(Ri j ) = − A

R3
i j

+ B

R5
i j

(dynes). (18)

The justification for this choice is as follows. First we wish to choose a formula
which is qualitatively like (3) so that it too is composed of attraction and repulsion
components. The choices of the exponents 3 and 5 guarantees further that the
volatile motion between molecules with exponents 7 and 13 will not prevail for
the more massive particles.

Thus, from (18),

φ(Ri j ) = − A

2R2
i j

+ B

4R4
i j

(ergs). (19)

Our first problem is to determineAandB. Assume thatF(1)= 0, so that from (18),

−A+ B = 0. (20)

To determine a second equation, some relevant observations must be made
first. Note that the numberN of molecules which can be arranged in the rectangle
using a regular triangular grid is

N = 30

3.06 · 10−8
· 240

2.65 · 10−8
= 8.87 · 1018. (21)

Also, note that since the mass of a water molecule is 30.103· 10−24 gr, the total
massM of the water molecules inside the 30× 240 cm rectangle in Fig. 7(a) is

M = 2.67 · 10−4 gr. (22)

Distributing this mass over the 8479 particles for conservation of total mass yields
an individual particle mass (m) of

m= 3.15 · 10−8 gr. (23)

From (2) and (21), the total potential energyEM of the molecular configuration
is, approximately,

EM = 3
8.88·1018∑

i=1

1.9646· 10−13

[(
2.725

3.06

)12

−
(

2.725

3.06

)6
]
= −1.3 · 106 erg.

(24)
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On the other hand, the total potential energyEp of the particle configuration is,
from (19), approximately,

Ep = 3
8479∑
i=1

(
−1

2
A+ 1

2
B

)
= 25, 437

(
−1

2
A+ 1

2
B

)
. (25)

However, the kinetic energies of both the particle and molecular configurations are
relatively negligible so that total energy is conserved by settingEM = Ep. Thus
the second equation forA andB is

25, 437

(
−1

2
A+ 1

2
B

)
= −1.3 · 106. (26)

The solution of (20) and (26) isA = B = 205. Thus, (18) takes the particular form

F(Ri j ) = 205

(
− 1

R3
i j

+ 1

R5
i j

)
.

We assume next that two particles interact only within the local interaction distance
D = 1.3 cm, which is the solution of the equationd F

d Ri j
= 0.

The dynamical equation of motion for each particlePi of the system is then
given by

d2 ERi

dt2
= −980Eδ + α

m

∑
j

j 6=i

205

[
1

R5
i j

− 1

R3
i j

] ERji

Ri j
; Ri j < D , (27)

in which Eδ = (0, 1),α is a parameter, andi = 1, 8479. The reason for the intro-
duction of the parameterα is that particle interaction should be local relative to
gravity, that is, gravity must dominate forRi j less than, but close to, unity, which
we assume to mean forRi j ≥ 0.7. However, this is the case if we chooseα = m,
since, forRi j = 0.9, 0.8, 0.7, 0.6,F takes the values 66, 225, 622, and 1687, re-
spectively, the first three of which are less than 980. Thus, the dynamical equations
for the particles are

d2 ERi

dt2
= −980Eδ +

∑
j

j 6=i

205

[
1

R5
i j

− 1

R3
i j

] ERji

Ri j
; Ri j < D . (28)

It should be noted that other choices ofα are also under study.

3.3. Particle Equilibrium

We now allow the 8479 particles in Fig. 7(a) to find their own equilibrium
when interacting in accordance with (28). We choose1t = 0.0001, and use the
no-slip reflection protocol.
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The initial motion of the system is almost one of free fall. So, for the first
20,000 time steps each velocity is damped by the factor of 0.2 every 20,000 time
steps. For the next 20,000 time steps, each velocity is damped by the factor of 0.4
every 20,000 time steps. For the third 20000 time steps, each velocity is damped
by the factor of 0.7 every 20,000 steps. For the final 20,000 steps the damping is
removed. In this fashion, the particles are eased down into a stable configuration.
Finally, to obtain a square set of particles, all particles withyi > 30 are removed to
yield the 7549 particle set shown in Fig. 7(b). The positions and velocities of these
particles are used as the initial data for the cavity flow examples to be described
next.

3.4. Examples

In the cavity examples which follow, we use the same protocol as was used
for molecules in Sect. 2.2 with respect to wall reflection and averaging velocities.

Example 1. Consider now the cavity problem for the 7459 particles in Fig. 7(b).
LetV = −40,1t = 0.00001, andJ = 20,000. Then Fig. 8 shows the development

Fig. 8. Development of classical primary vortex.
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of a classical primary vortex at the respective timest = 0.2, 0.6, 1.0, 1.4. Entirely
similar results followed forJ = 14,000, 11,000, 9000.

Results analogous to those just described were obtained also withV = −100,
−250,−600, but the size of the primary vortex increased with the wall speed.

Example 2. To simulate turbulence, setV = −3000,1t = 5(10)−7, J = 80,000.
Figure 9 shows the flow development at the respective times 0.04, 0.08, 0.12, 0.15.
The first frame shows that the motion begins with a compression wave. The next
two frames show that the ensuing particle repulsion is up and to the right in the
usual primary vortex direction. The last frame shows the large crosscurrent over
the usual primary vortex direction. Again, to support the contention that this last
frame represents fully turbulent flow, we use the concept of a small vortex stated
in Sect. 2.4. In searching for small vortices, attention was confined to within a
circle of radius 1 cm around each particle. There resulted 355 small vortices which
are shown in Fig. 10(a). Moreover, Fig. 10(b) shows the distribution of 349 small
vortices at the timet = 0.18, so that, after only 0.03 s, this figure shows the rapid
change throughout the cavity of the vortex distribution shown in Fig. 10(a).

Fig. 9. Development of turbulent flow.V = −3000.
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Fig. 10. (a) 355 small vortices att = 0.15. (b) 349 small vortices att = 0.18.

Entirely similar results for Fig. 9 followed withJ = 60,000, 40,000, 20,000.

Other examples of particle models include the stress and crack development
in a slotted copper plate (Greenspan, 1989) and approximation of the contact angle
of adhesion of a sessile drop on a solid surface (Korlie, 1997).

4. MOLECULAR PARAMETERS UNAVAILABLE

4.1. Qualitative Models

Although quantitative models are always to be preferred, in many interesting
cases the molecular parameters may not be known. For such cases, we often develop
qualitative models. Such models do provide the researcher with several advantages,
including

• the development of intuition,
• allowance for variation of parameters to determine which parameters are

of most significance, and
• development of insights into the mechanisms of material behavior.

With this in mind, we examine next a qualitative model.

Example. (Soliton collision (Greenspan, 2001)). Figures 11 and 12 show, by
means of a discrete string composed of 1001 particles, rather than by means of the
KdV equation, the motion of two solitons and their passage through each other.
This model is of value because it allows one to show the velocity fields of the
particles during the complex collision, as demonstrated in Fig. 12.

Other qualitative models have simulated the biological self-reorganizatuion of
separated tissue cells (Greenspan, 1997; Steinberg, 1963) the bounce of an elastic
ball (Greenspan, 2000), and the generation of the unstable equilibrium position of
an elastic snap through (Greenspan and Casulli, 1985).
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Fig. 11. Passage of two solitons through one another: (a) Overall view. (b) Higher time
resolution aroundt = 0.75.

Fig. 12. Passage of two solitons through one another, showing both position and velocity.
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5. N SMALL

Now, if N is small, we would do a very good job in solving theN-body
problem. By this we mean that we would like not only to solve the problem
with accuracy, but we would also like to preserve numerically any basic physical
invariants of the system. To do this in detail, we concentrate on the 3-body problem,
which is the prototype problem because it contains all the difficulties of the general
N-body problem. The entire discussion extends in a natural way to the general
problem.

For i = 1, 2, 3, let Pi of massmi be atEri = (xi , yi , zi ) at time t . Let the
positive distance betweenPi and Pj , i 6= j , be ri j = r j i . Let φ = φi j = φ(ri j ),
given in ergs, be the potential for the pairPi , Pj . Then the force onPi due toPj is

EFi = − ∂φ
∂ri j

Eri − Er j

r i j
,

and the Newtonian dynamical differential equations for the 3-body problem are

mi
d2Eri

dt2
= − ∂φ

∂ri j

Eri − Er j

r i j
− ∂φ

∂rik

Eri − Erk

rik
,= 1, 2, 3, (29)

where i = 1 implies j = 2, k = 3; i = 2 implies j = 1, k = 3; i = 3 implies
j = 1, k = 2.

The following summary theorem incorporates several well-known results.

Theorem 5.1. System (29) conserves energy, linear momentum, and angular
momentum. It is also covariant under translation, rotation, and uniform relative
motion of coordinate frames (Goldstine, 1980).

To solve an initial value problem for (29) numerically, we will first rewrite it
as the equivalent first-order system

dEri

dt
= Evi , i = 1, 2, 3, (30)

mi
dEvi

dt
= − ∂φ

∂ri j

Eri − Er j

r i j
− ∂φ

∂rik

Eri − Erk

rik
, i = 1, 2, 3. (31)

Our numerical formulation now proceeds as follows. For1t > 0, let tn =
n(1t), n = 0, 1, 2,. . . . At time tn, let Pi be atEri ,n = (xi ,n, yi ,n, zi ,n) with veloc-
ity Ev = (vi ,x,n, vi ,y,n, vi ,z,n). Denote the distances‖P1P2‖, ‖P1P3‖, ‖P2P3‖ by
r12,n, r13,n, r23,n, respectively. Differential Eqs. (30) and (31) are now approxi-
mated, respectively, by the difference equations

Eri ,n+1− Eri ,n

1t
= Evi ,n+1+ Evi ,n

2
, (32)
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mi
Evi ,n+1− Evi ,n

1t
= −φ(ri j ,n+1)− φ(ri j ,n)

ri j ,n+1− ri j ,n

Eri ,n+1+ Eri ,n − Er j ,n+1− Er j ,n

ri j ,n+1+ ri j ,n

−φ(rik,n+1)− φ(rik,n)

rik,n+1− rik,n

Eri ,n+1+ Eri ,n − Erk,n+1− Erk,n

rik,n+1+ rik,n
. (33)

Note that the force is approximated, not the potential. We take the very same
potential as in continuum mechanics, the significance of which will be seen shortly.
Consistency follows immediately as1t → 0.

System (32), (33) consists of 18 implicit equations for the unknowns

xi ,n+1, yi ,n+1, zi ,n+1, vi ,x,n+1, vi ,y,n+1, vi ,z,n+1

in the 18 knowns

xi ,n, yi ,n, zi ,n, vi ,x,n, vi ,y,n, vi ,z,n

and is solvable readily by Newton’s method (Greenspan, 1997).
We now state for our numerical method the following theorem which is the

difference analogue of Theorem 5.1.

Theorem 5.2. The numerical method conserves exactly the same energy, linear
momentum and angular momentum as does differential system (29), and does
this independently of the time step1t . In addition the difference equations are
covariant under translation, rotation, and uniform relative motion of coordinate
frames (Greenspan, 1997).

Rather than give the proof of all parts of the theorem, let us show in complete
detail the proof of conservation of energy to indicate the methodology used.

Proof: Define

WN =
N−1∑
n=0

3∑
i=1

mi (Eri ,n+1− Eri ,n) · (Evi ,n+1− Evi ,n)

1t
. (34)

Then, from (32).

WN =
N−1∑
n=0

3∑
i=1

mi
(Eri ,n+1− Eri ,n)

1t
· (Evi ,n+1− Evi ,n).

=
N−1∑
n=0

3∑
i=1

mi
(Evi ,n+1+ Evi ,n)

2
· (Evi ,n+1− Evi ,n)
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=
N−1∑
n=0

3∑
i=1

mi

(
v2

i ,n+1

2
− v2

i ,n

2

)

=
3∑

i=1

1

2
mi
[(

v2
i ,1− v2

i ,0

)+ (v2
i ,2− v2

i ,1

)+ (v2
i ,3− v2

i ,2

)+ · · ·
+ (v2

i ,N − v2
i ,N−1

)]
= 1

2
m1v2

1,N +
1

2
m2v2

2,N +
1

2
m3v2

3,N −
1

2
m1v2

1,0−
1

2
m2v2

2,0−
1

2
m3v2

3,0

= KN − K0

Next, observing first thatEri − Er j = Er j i , and then substituting (33) into (34) yields
with simple algebraic manipulation that

WN =
N−1∑
n=0

(−φ12,n+1− φ13,n+1− φ23,n+1+ φ12,n + φ13,n + φ23,n)

= −φ12,N − φ13,N − φ23,N + φ12,0+ φ13,0+ φ23,0

= −φN + φ0.

Hence,

KN − K0 = −φN + φ0

or

KN + φN = K0+ φ0, N = 0, 1, 2, 3,. . .

Moreover, sinceK0 andφ0 depend only onEri ,0 andEvi ,0, it follows thatK0+ φ0 is
the same in both the continuous and the discrete cases, so that the energy conserved
is exactly that of the continuous system. Note also that the proof was independent
of 1t . ¤

Example.Motion of a discrete dodecahedral top on a smooth surface
(Greenspan, 1997).

Rigid body motion is of fundamental interest in mathematics, science, and en-
gineering. We will consider a discrete dodecahedral body and simulate its motion
when it spins like a top. The approach will not require the use of special coordi-
nates, Cayley–Klein parameters, tensors, dyadics, or related concepts (Goldstine,
1980). All that is required is the conservative numerical methodology developed
above.



P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464429 June 17, 2003 9:52 Style file version May 30th, 2002

Digital Studies and Perspectives forN-Body Modelling in Physics 269

Consider, now, inXYZspace as shown in Fig. 13(a), a dodecahedronP1–P8.
For the present, let the distances between the vertices be given as
follows:

‖P1Pj ‖ = ‖Pj P8‖ = 2 cm, j = 2, . . . , 7,

‖P2P3‖ = ‖P3P4‖ = ‖P4P5‖ = ‖P5P6‖ = ‖P6P7‖ = ‖P7P8‖ = 1 cm,

‖P2P5‖ = ‖P3P6‖ = ‖P4P7‖ = 2 cm.

The verticesP2–P7 are taken to be vertices of a regular, plane hexagon with
edge length 1 cm. The hexagon is located in the planez= √3 and the vertex
coordinates are

P2(0, 1,
√

3), P3

(
1
2

√
3, 1

2,
√

3
)

, P4

(
1
2

√
3,− 1

2,
√

3
)

,

P5(0,−1,
√

3), P6

(
− 1

2

√
3,− 1

2,
√

3
)

, P7

(
− 1

2

√
3, 1

2,
√

3
)
.

The geometric center of the hexagon is the pointQ(0, 0,
√

3). The pointP8, located
on the line throughP1Q, is at P8(0, 0, 2

√
3).

To set the top in rotation, the initial velocities ofP2–P7 are chosen to be, as
shown in Fig. 13(b), respectively,

Ev2 = (v, 0, 0), Ev3 =
(

1
2v,− 1

2v
√

3, 0
)

, Ev4 =
(
− 1

2v,− 1
2v
√

3, 0
)

,

Ev5 = (−v, 0, 0), Ev6 =
(
− 1

2v, 1
2v
√

3, 0
)

, Ev7 =
(

1
2v, 1

2v
√

3, 0
)

,

Fig. 13. (a) The dodecahedron. (b) Planar hexagon and initial velocities. (c) The rotation of theXZ
plane.
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so that the velocity of each particle is perpendicular to the line joining it toQ. The
pointsP1 andP8 are given zero initial velocities.

Next, we want to tilt the top and this is done by rotating theXZplane through
an angleα, as shown in Fig. 13(c). Thus, the initial positions (x′i , y′i , z′i ) and initial
velocities (vi ,x′ , vi ,y′ , vi ,z′ ) of P1–P8 are determined finally by

x′i = xi cosα + zi sinα, y′i = yi , z′i = −xi sinα + zi cosα,

vix ′ = vix cosα + viz sinα, viy′ = viy , viz′ = −vix sinα + viz′ cosα.

Thus, once the parametersv andα are given, all initial data for a tilted, rotating
dodecahedral top are determined, and the resulting 8-body problem will be solved
with energy, linear momentum and angular momentum conserved. Note also that
because the top is rigid, a description of the motions ofP1 and Q suffice to
determine the motion of the entire top.

The force formulas and the subtleties of their application are detailed in
Greenspan (1997).

5.1. Examples

Example 1. Let α = 15◦, v = 400. The conservative numerical formulas were
then run for 200,000,000 time steps with a printout every 100,000 steps. The
resulting motion ofP1 for the first cycle is shown in Fig. 14(a), which contains
1086 points, on the regionx ∈ [−0.32, 3.1],y ∈ [−1.71, 1.71]. and in the enlarged
version in Fig. 14(b) on the regionx ∈ [−0.196, 0.916],y ∈ [−0.4678, 0.4678].

The motion is characterized by a circular, cycloid-type trajectory around the
central point (0.4483,0) in theXY plane. The point (x∗, y∗, z∗) is always on the
line (0.4483, 0,z) with z∗ varying in the range [1.668, 1.673].

Example 1 is typical of a variety of others studied in which the parametersv
andα were varied. Let us then examine a difficult problem in which certain masses
are not all the same.

Fig. 14. (a) First cycle of a cycloid-like trajectory, shown enlarged in (b).
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Fig. 15. (a) Looping trajectory, with initial part shown enlarged in (b).

Example 2. As in Example 1, letα = 15◦, v = 400, but setm2 = 2, m4 = 4.
The conservative numerical formulas were then run for 100,000 time steps with
a printout every 20 steps. Figure 15(a) shows the trajectory ofP1, for the first
4000 points, in the regionx ∈ [−0.015, 0.015],y ∈ [−0.02, 0.02]. Figure 15(b)
shows an enlarged version of the motion of the first 1000 points in the region
x ∈ [−0.008, 0.1],y ∈ [−0.02, 0.015].

Both figures reveal large looping motions forP1. The graphics procedure
available was insufficient to determine whether or not small cusps were part of
the trajectory. Figure 16 shows the erratic motion over the full 5000 points ofQ
in the narrow three-dimensional rangex∗ ∈ [0.444, 0.452],y∗ ∈ [−0.008, 0.008],
z∗ ∈ [1.670, 1.676].

Another application of conservative methodology has been made to Calogero
and Toda Hamiltonian systems (Greenspan, 1990).

Fig. 16. Looping trajectory in three dimensions.



P1: GMX

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464429 June 17, 2003 9:52 Style file version May 30th, 2002

272 Greenspan

6. THE 1-BODY PROBLEM (GREENSPAN, 1997)

Interestingly enough, there exist some very important 1-body problems, and
these occur inspecial relativity. Let us then turn to a basic dynamical problem
in special relativity and begin by discussing the very few concepts which will be
required for the development.

In special relativity one takes into account the time required for light to travel
from a phenomenon being observed to the eye of the observer. Consider, then,
two reference frames: a LAB frame with Euclidean coordinatesX, Y, Z and a
ROCKET frame with Euclidean coordinatesX′,Y′,Z′, which coincide initially. In
the frames one positions observersO andO′ at their respective origins. At some
intial time the observers have synchronized clocks. Assume the rocket frame is in
motion in theX direction with speedu relative to the lab frame. An eventP, like
an exploding star, is observed by bothO and O′. O recordsP as happening at
(x, y, z) at timet , while O′ recordsP as happening at (x′, y′, z′) at timet ′. Taking
into account the time for light to travel to the eyes of the observers, these variables
are related by the Lorentz transformation:

x′ = c(x − ut)

(c2− u2)
1
2

, y′ = y z′ = z t′ = (c2t − ux)

(c2− u2)1/2
, (35)

in whichc is the speed of light.
For covariancerelative to the Lorentz transformation, Einstein showed that

for the motion of a particleP of rest massm0

F = d

dt
(mv), m= cm0

(c2− v2)1/2
(LAB), (36)

maps under the Lorentz transformation into

F ′ = d

dt′
(m′v′), m′ = cm0

(c2− v′2)
1
2

(ROCKET), (37)

that is, the laws of motion are the same in both the lab frame and the rocket
frame.

Now, in the lab frame the equation of so simple an oscillator as the harmonic
oscillator has a nonlinear equation of the form (Greenspan, 1997)

ẍ + (1− ẋ2)3/2x = 0,

coupled with initial conditions

x(0)= α, ẋ(0)= β,

which requires numerical methodology.
Thus, one now must insert identical computers into the LAB and ROCKET

frames and ask how the observers can solve the problem of harmonic motion
numerically so that the physics of special relativity is preserved, that is, so that the
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numerical results of the observers are related by the Lorentz transformation. This
is accomplished as follows.

For1t > 0, let tn = n1t , n = 0, 1, 2, 3,. . . . Let t ′n correspond totn by the
Lorentz transformation. Attn let P be at (xn, yn, zn) in the LAB and at (x′n, y′n, z′n)
in the ROCKET. These are also related by the Lorentz transformation. Define

vn = 1xn

1tn
, an = 1vn

1tn
(LAB), (38)

v′n =
1x′n
1t ′n

, a′n =
1v′n
1t ′n

(ROCKET). (39)

Then the following theorems are valid (Greenspan, 1997):

Theorem 6.1. (Covariance). Under the Lorentz transformation

Fn = c2mn[(
c2− v2

n

)(
c2− v

2

n+1

)] 1
2

1vn

1tn
, mn = cm0(

c2− v2
n

)1/2 (40)

transforms into

F ′n =
c2m′n[(

c2− v′2n
)(

c2− v′2n+1

)] 1
2

1v′n
1t ′n

, m′n =
cm0(

c2− v′2n
)1/2 . (41)

Moreover, (40) and (41) converge to the Einstein equations as the time steps
converge to zero, that is, consistency is valid.

Interestingly enough, (38)–(41) can be solved explicitly to yield

xk+1 = xk + (1tk)vk, (42)

vk+1 = vk + (1tk)(1− (vk)2)Fk

√
1− (vk)2+ (1tk)2(1− (vk)2)2(Fk)2

1+ (1tk)2(1− (vk)2)2(Fk)2
, (43)

x′k+1 = x′k + (1t ′k)v′k, (44)

v′k+1 =
v′k + (1t ′k)(1− (v′k)2)F ′k

√
1− (v′k)2+ (1t ′k)2(1− (v′k)2)2(F ′k)2

1+ (1t ′k)2(1− (v′k)2)2(F ′k)2
(45)

from which the computations are readily done.
Let us assume now thatx(0)= x0 = 0. Then Fig. 17 shows how the amplitude

of the relativistic harmonic oscillator deviates from that of the Newtonian harmonic
oscillator with increasingv0.

Finally we have a major theorem (Greenspan, 1997):

Theorem 6.2. Using (38) and (40) numerically in the LAB, and using (39) and
(41) numerically in the ROCKET results in numerical results which are related by
the Lorentz transformation.
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Fig. 17. Amplitude of a relativistic harmonic oscillator as a function ofv0.

7. SUMMARY

In this paper we have directed attention to new discrete models of solids,
liquids, and gases. Our approach is based on the atomic and molecular structure
of matter. It is practical because of the availability of modern digital computers,
and because quantum mechanical principles, like uncertainty, which makes elec-
tron positions fuzzy within an atom, place few important restrictions on how a
stable atom can be held in place. Indeed, a stable atom, on the whole, has a com-
paratively definite position set by its comparatively massive nucleus (Feynman,
1959). This observation was supported and clarified by Feynman (1959) in a lec-
ture to the American Physical Society in which he also said, (a) “The principles
of physics, as far as I can see, do not speak against the possibility of maneuver-
ing things atom by atom,” and (b) “The problems of chemistry and biology can
be greatly helped if our ability to see what we are doing, and to do things on
an atomic level, is relatively developed—a development which I think cannot be
avoided.” Feynman then discussed specific areas of development and application,
and thereby initiated a new branch of physics, called nanophysics, and a new
branch of technology, called nanotechnology, which are both in energetic states of
development.
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In our models we have replaced continuous structures and small systems of
partial differential equations by discrete structures and large systems of ordinary
differential equations. The advantage in doing so is that it then becomes possible
to study phenomena which are not consequences of continuum equations. This is
the case of turbulent fluid flow which we have explored in sections 2.4 and 3.4. The
basic mathematical problem for all our studies is theN-body problem described
in complete generality in section 1.1
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